XX
Data Scientist - RetailOmni InclusiveUnited States
XX

Data Scientist - Retail

Omni Inclusive
  • +2
  • +6
  • US
    United States
  • +2
  • +6
  • US
    United States

Über

Retail domain experience is mandatory
Mandatory skills:
Data mining, Machine learning(regression and classification), prediction algorithms , data visualization, Data analysis, Big Query.
Job Description: •
Minimum 6-8+ years of relevant experience in data scientist role in Retail domain is a must • Expertise in data analysis & modeling around retail problem statements ranging from inventory shrinkage, -ve inventory etc. • Strong hands on development skills on Python or similar programing language. • Strong understanding on machine learning algorithms and statical modeling. • Experience in data visualization tools. • Familiarity with cloud platform- GCP. • Excellent problem solving and critical thinking skills • Strong communication and presentation skills. Responsibilities: • Data Collection and cleaning : collect data from various sources/systems and clean for analysis. • EDA ( exploratory data analysis) understand data patterns and analysis. • Modelling : design , build predictive models and machine learning algorithm to solve business problem. Validate and fine tune models to ensure scalability . • Visualization and Communication : create dashboard and visualization to communicate insights effectively. • Coloration and Strategy : work closely with cross functional team included data engineers, product managers and business team. • Understand the business objective and align data science solution accordingly • Provide strategic recommendations.

Wünschenswerte Fähigkeiten

  • Data Analysis
  • Data Mining
  • Data Visualization
  • Predictive Modeling
  • Python
  • Statistical Modeling
  • United States

Berufserfahrung

  • Machine Learning
  • Data Scientist

Sprachkenntnisse

  • English
Hinweis für Nutzer

Dieses Stellenangebot stammt von einer Partnerplattform von TieTalent. Klicken Sie auf „Jetzt Bewerben“, um Ihre Bewerbung direkt auf deren Website einzureichen.